Search results for "Mathematics - Classical Analysis and ODEs"

showing 10 items of 106 documents

Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups

2020

This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, in the Heisenberg group $\mathbb{H}^n$, $n\in \mathbb{N}$. For $1\leq k\leq n$, we show that every intrinsic $L$-Lipschitz graph over a subset of a $k$-dimensional horizontal subgroup $\mathbb{V}$ of $\mathbb{H}^n$ can be extended to an intrinsic $L'$-Lipschitz graph over the entire subgroup $\mathbb{V}$, where $L'$ depends only on $L$, $k$, and $n$. We further prove that $1$-dimensional intrinsic $1$-Lipschitz graphs in $\mathbb{H}^n$, $n\in \mathbb{N}$, admit corona decompositions by intrinsic Lipschitz graphs with smaller Lipschitz constants. This complements results that…

01 natural sciencesmatemaattinen analyysiCombinatoricsCorona (optical phenomenon)Mathematics - Metric Geometry0103 physical sciencesHeisenberg groupClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometry0101 mathematicsCommutative propertyPhysicsApplied MathematicsHeisenberg groups010102 general mathematicsMetric Geometry (math.MG)Lipschitz continuityGraphcorona decompositionMathematics - Classical Analysis and ODEs35R03 26A16 28A75low-dimensional intrinsic Lipschitz graphs010307 mathematical physicsmittateoriaLipschitz extension
researchProduct

Vertical versus horizontal Sobolev spaces

2020

Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev sp…

010102 general mathematicsMetric Geometry (math.MG)Function (mathematics)Lipschitz continuity01 natural sciencesFunctional Analysis (math.FA)Fractional calculusSobolev spaceCombinatoricsMathematics - Functional AnalysisMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesVertical directionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupOrder (group theory)010307 mathematical physics0101 mathematics46E35 (Primary) 26A33 35R03 43A15 (Secondary)AnalysisMathematics
researchProduct

Sustained oscillations in the MAP kinase cascade.

2016

Abstract The MAP kinase cascade is a network of enzymatic reactions arranged in layers. In each layer occurs a multiple futile cycle of phosphorylations. The fully phosphorylated substrate then serves as an enzyme for the layer below. This paper focuses on the existence of parameters for which Hopf bifurcations occur and generate periodic orbits. Furthermore it is explained how geometric singular perturbation theory allows to generalize results from simple models to more complex ones.

0301 basic medicineStatistics and ProbabilitySingular perturbationDynamical systems theoryMolecular Networks (q-bio.MN)Dynamical Systems (math.DS)MAP kinase cascadeGeneral Biochemistry Genetics and Molecular BiologyQuantitative Biology::Subcellular Processes03 medical and health sciencessymbols.namesakeSimple (abstract algebra)Classical Analysis and ODEs (math.CA)FOS: MathematicsQuantitative Biology - Molecular NetworksSustained oscillationsMathematics - Dynamical SystemsHopf bifurcationPhysics030102 biochemistry & molecular biologyGeneral Immunology and MicrobiologyFutile cycleApplied MathematicsQuantitative Biology::Molecular NetworksGeneral Medicine030104 developmental biologyClassical mechanicsMathematics - Classical Analysis and ODEsModeling and SimulationFOS: Biological sciencessymbolsPeriodic orbitsGeneral Agricultural and Biological SciencesMathematical biosciences
researchProduct

Space-filling vs. Luzin's condition (N)

2013

Let us assume that we are given two metric spaces, where the Hausdorff dimension of the first space is strictly smaller than the one of the second space. Suppose further that the first space has sigma-finite measure with respect to the Hausdorff measure of the corresponding dimension. We show for quite general metric spaces that for any measurable surjection from the first onto the second space, there is a set of measure zero that is mapped to a set of positive measure (both measures are the Hausdorff measures corresponding to the Hausdorff dimension of the first space). We also study more general situations where the measures on the two metric spaces are not necessarily the same and not ne…

28A75 (Primary) 54C10 26B35 28A12 28A20 (Secondary)General Mathematicsta111Hausdorff spaceMathematics::General TopologySpace (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisSurjective functionCombinatoricsSet (abstract data type)Metric spaceMathematics - Classical Analysis and ODEsHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

$\Omega$-symmetric measures and related singular integrals

2019

Let $\mathbb{S} \subset \mathbb{C}$ be the circle in the plane, and let $\Omega: \mathbb{S} \to \mathbb{S}$ be an odd bi-Lipschitz map with constant $1+\delta_\Omega$, where $\delta_\Omega>0$ is small. Assume also that $\Omega$ is twice continuously differentiable. Motivated by a question raised by Mattila and Preiss in [MP95], we prove the following: if a Radon measure $\mu$ has positive lower density and finte upper density almost everywhere, and the limit $$ \lim_{\epsilon \downarrow 0} \int_{\mathbb{C} \setminus B(x,\epsilon)} \frac{\Omega\left((x-y)/|x-y|\right)}{|x-y|} \, d\mu(y) $$ exists $\mu$-almost everywhere, then $\mu$ is $1$-rectifiable. To achieve this, we prove first that if …

28A75 28A12 28A78Plane (geometry)Mathematics - Classical Analysis and ODEsGeneral MathematicsMathematical analysisSingular integralConstant (mathematics)OmegaMathematics
researchProduct

Integrability of orthogonal projections, and applications to Furstenberg sets

2022

Let $\mathcal{G}(d,n)$ be the Grassmannian manifold of $n$-dimensional subspaces of $\mathbb{R}^{d}$, and let $\pi_{V} \colon \mathbb{R}^{d} \to V$ be the orthogonal projection. We prove that if $\mu$ is a compactly supported Radon measure on $\mathbb{R}^{d}$ satisfying the $s$-dimensional Frostman condition $\mu(B(x,r)) \leq Cr^{s}$ for all $x \in \mathbb{R}^{d}$ and $r > 0$, then $$\int_{\mathcal{G}(d,n)} \|\pi_{V}\mu\|_{L^{p}(V)}^{p} \, d\gamma_{d,n}(V) \tfrac{1}{2}$ and $t \geq 1 + \epsilon$ for a small absolute constant $\epsilon > 0$. We also prove a higher dimensional analogue of this estimate for codimension-1 Furstenberg sets in $\mathbb{R}^{d}$. As another corollary of our method,…

28A80 (primary) 28A78 44A12 (secondary)Mathematics - Metric GeometryMathematics - Classical Analysis and ODEsGeneral MathematicsFurstenberg setsIncidencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics - CombinatoricsMetric Geometry (math.MG)k-plane transformCombinatorics (math.CO)Projections
researchProduct

Visible parts of fractal percolation

2009

We study dimensional properties of visible parts of fractal percolation in the plane. Provided that the dimension of the fractal percolation is at least 1, we show that, conditioned on non-extinction, almost surely all visible parts from lines are 1-dimensional. Furthermore, almost all of them have positive and finite Hausdorff measure. We also verify analogous results for visible parts from points. These results are motivated by an open problem on the dimensions of visible parts.

28A80Plane (geometry)General MathematicsOpen problemProbability (math.PR)Mathematical analysisFractalDimension (vector space)Mathematics - Classical Analysis and ODEsPercolationHausdorff dimensionClassical Analysis and ODEs (math.CA)FOS: MathematicsHausdorff measureAlmost surelyMathematics - ProbabilityMathematics
researchProduct

Estimates for the differences of positive linear operators and their derivatives

2019

The present paper deals with the estimate of the differences of certain positive linear operators and their derivatives. Oxur approach involves operators defined on bounded intervals, as Bernstein operators, Kantorovich operators, genuine Bernstein-Durrmeyer operators, and Durrmeyer operators with Jacobi weights. The estimates in quantitative form are given in terms of the first modulus of continuity. In order to analyze the theoretical results in the last section, we consider some numerical examples.

41A25 41A36Applied MathematicsNumerical analysisLinear operatorsNumerical Analysis (math.NA)010103 numerical & computational mathematics01 natural sciencesModulus of continuity010101 applied mathematicsSection (fiber bundle)Mathematics - Classical Analysis and ODEsBounded functionTheory of computationClassical Analysis and ODEs (math.CA)FOS: MathematicsOrder (group theory)Applied mathematicsMathematics - Numerical Analysis0101 mathematicsAlgebra over a fieldMathematics
researchProduct

On singular integral and martingale transforms

2007

Linear equivalences of norms of vector-valued singular integral operators and vector-valued martingale transforms are studied. In particular, it is shown that the UMD(p)-constant of a Banach space X equals the norm of the real (or the imaginary) part of the Beurling-Ahlfors singular integral operator, acting on the X-valued L^p-space on the plane. Moreover, replacing equality by a linear equivalence, this is found to be the typical property of even multipliers. A corresponding result for odd multipliers and the Hilbert transform is given.

46B09General Mathematics46B20 (Secondary)Banach space42B15 (Primary) 42B2001 natural sciencesUpper and lower bounds010104 statistics & probabilitysymbols.namesakeCorollary60G46; 42B15 (Primary) 42B20; 46B09; 46B20 (Secondary)Classical Analysis and ODEs (math.CA)FOS: Mathematics60G460101 mathematicsMathematicsNormed vector spaceDiscrete mathematicsApplied MathematicsProbability (math.PR)010102 general mathematicsSingular integralSingular valueMathematics - Classical Analysis and ODEssymbolsHilbert transformMartingale (probability theory)Mathematics - ProbabilityTransactions of the American Mathematical Society
researchProduct

Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces

2015

We show that the Heisenberg group is not minimal in looking down. This answers Problem 11.15 in `Fractured fractals and broken dreams' by David and Semmes, or equivalently, Question 22 and hence also Question 24 in `Thirty-three yes or no questions about mappings, measures, and metrics' by Heinonen and Semmes. The non-minimality of the Heisenberg group is shown by giving an example of an Ahlfors $4$-regular metric space $X$ having big pieces of itself such that no Lipschitz map from a subset of $X$ to the Heisenberg group has image with positive measure, and by providing a Lipschitz map from the Heisenberg group to the space $X$ having as image the whole $X$. As part of proving the above re…

53C17 22F50 22E25 14M17General MathematicsSpace (mathematics)Heisenberg group01 natural sciencesMeasure (mathematics)Image (mathematics)Set (abstract data type)Ahlfors-regular distancesMathematics - Metric Geometry53C170103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupMathematics::Metric GeometryMathematics (all)22E250101 mathematicsMathematicsDiscrete mathematicsmatematiikkamathematicsMathematics::Complex Variables010308 nuclear & particles physicsta111010102 general mathematicsMetric Geometry (math.MG)Lipschitz continuityMetric spaceMathematics - Classical Analysis and ODEsBounded function14M17; 22E25; 22F50; 53C17; Mathematics (all)14M1722F50
researchProduct